令G=(V,E)为简单无向图。若中的所有顶点v均被S∈V所电力控制,称子集s为G的电力控制集。电力控制数y。(G)为G的所有电力控制集基数的最小值。当图G的控制集S的诱导子图G[S]连通时,称S为连通控制集,图G的连通控制数)yc(G)为G的所有连通控制集的基数的最小值。讨论了图G的电力控制数和连通控制数,得到了具有相同电力控制数和连通控制数的仙人掌图、块图、立方图的特征。
Let G= (V,E) be a simple undirected graph. A subset S~_C_V is a power dominating set of G if S power dominates all vertices in V. The power domination number, denoted rp(G) , is the minimum cardinality of a power dominating set of G. A dominating set is called a connected dominating set if the induced subgraph GES~ is connected. The connected domination number re(G) of G is the minimum cardinality taken over all minimal connected dominating sets of G. In this paper, we characterize cubic graphs, block graphs and cactus graphs with equal power domi- nation and connected domination numbers.