太赫兹(THz)时域光谱(TDS)技术,能同时测量幅值和相位信息,因而能检测到物质丰富的物理化学性质,已逐渐成为科学界一大热点。磷化铟(InP)因其载流子寿命短、质量小等优良性能,正逐渐成为产生和检测THz波辐射的首选光电导材料之一。文章利用THz-TDS测试技术,在室温氮气环境中,对n型0.35Ω·cm的InP材料在0.2~4THz波段的特性进行了研究。文章根据物理传输模型,利用更准确的迭代方式,选用新的初始值,更快更准确的得到了复折射率,介电常数,电导率等THz光学常数,并且用Drude模型进行了理论上的模拟计算,所得结果与实验吻合很好,最后还得到了载流子的寿命、迁移率和浓度等THz重要参数。
Terahertz time-domain spectroscopy (THz-TDS), which directly measures the THz wave's temporal electric field, can give the amplitude and phase of the THz wave pulse simultaneously. THz-TDS is attracting more attention among scientists. InP with short carrier average collision time and low effective mass is growing up as one of the best photoconductive materials for emitting and detecting THz waves. An n-type InP of 0. 35 Ω.cm was characterized over the range from 0. 2 to 4 THz at room temperature in the present paper with THz time-domain spectroscopy, which was placed in a closed box purged with dry nitrogen gas. Some THz optical properties, such as complex refractive index, dielectric constant, and conductivity, were extracted, based on more exact iterative method with new initial function. Drude model was also applied for simulation, which fitted well with the experimental results. Finally, the carrier average collision time, density and mobility of the InP were also characterized.