位置:成果数据库 > 期刊 > 期刊详情页
量子搜索及量子智能优化研究进展
  • ISSN号:1671-4598
  • 期刊名称:计算机测量与控制
  • 时间:0
  • 页码:1239-1242
  • 语言:中文
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]牡丹江师范学院数学系,黑龙江牡丹江157012
  • 相关基金:国家自然科学基金No.60773065; 黑龙江省普通高等学校青年学术骨干支持计划项目(No.1154G09); 牡丹江师范学院科学技术研究重点项目(No.Z2008001)~~
  • 相关项目:量子蚁群算法及蚁群行为的波函数模型
作者: 李士勇|
中文摘要:

基于T-S模型,提出一种非线性系统的模型辨识方法。利用蚁群聚类算法来进行结构辨识,确定系统的模糊空间和模糊规则数。在聚类的基础上,利用遗传算法辨识模糊模型的后件加权参数,得到一个精确的模糊模型,从而实现参数辨识。仿真结果验证了该方法的有效性,表明该方法能够实现非线性系统的辨识,辨识精度高,可当作复杂系统建模的一种有效手段。

英文摘要:

A model identification approach of nonlinear systems is presented based on T-S model.To automatically acquire the fuzzy space structure of system and the number of fuzzy rules,the ant colony clustering algorithm is used in structure identification.Based on the cluster result,the parameters of conclusion of fuzzy model are identified by means of the genetic algorithm to obtain a precise fuzzy model and realize parameters identification.This proposed method realizes the identification of nonlinear system and improves greatly the precision of identification.The simulation results show the effectiveness of the proposed method.

同期刊论文项目
期刊论文 40 会议论文 3 著作 1
同项目期刊论文
期刊信息
  • 《计算机测量与控制》
  • 北大核心期刊(2011版)
  • 主管单位:中国航天科工集团公司
  • 主办单位:中国计算机自动测量与控制技术协会
  • 主编:苟永明
  • 地址:北京海淀区阜成路甲8号中国航天大厦405
  • 邮编:100048
  • 邮箱:ly@chinamca.com
  • 电话:010-68371578 68371556
  • 国际标准刊号:ISSN:1671-4598
  • 国内统一刊号:ISSN:11-4762/TP
  • 邮发代号:82-16
  • 获奖情况:
  • 中国学术期刊综合评价数据库来源期刊,中国科技论文统计源期刊,“国家期刊奖百种重点期刊”
  • 国内外数据库收录:
  • 美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版)
  • 被引量:27924