本文提出了一种基于光纤叠栅的全光纤声光可调谐滤波器,与普通光纤布拉格光栅型全光纤声光可调谐滤波器相比,该滤波器能够对光纤叠栅的两个中心波长进行同步调制.理论分析了声波频率和声致应变幅度对基于光纤叠栅的全光纤声光可调谐滤波器的传输光谱的影响,结果表明,各阶次反射峰分别以两个主反射峰为中心呈对称关系,且主反射峰与其所调制出的次反射峰之间的波长间隔与声波频率成正比,而两个主反射峰所调制出的同阶次反射峰之间的波长间隔与声波频率无关;声致应变幅度主要影响主反射峰及次反射峰的反射率的变化.实验中,分别测试声波频率为390 kHz和710 kHz的基于光纤叠栅的全光纤声光可调谐滤波器的传输光谱,实验结果的变化趋势与仿真分析结果相一致.
In this paper, an all fiber acousto-optic tunable filter based on superimposed fiber Bragg gratings (SFBG-AOTF) is demonstrated and studied. Compared to the normal fiber Bragg gratings based all fiber acousto-optic tunable filter, SFBG-AOTF can modulate the two optical resonant wavelengths of the gratings synchronously. The spectrum of SFBG-AOTF at various acoustic frequencies and under acoustically induced strains, has been analyzed theoretically. Based on simulation results, one can find that each order of the secondary reflection peak is symmetrical with respect to the two primary reflection peaks with SFBG as the center, and the resonant wavelength spacing between the primary reflection peak and the secondary reflection peak which is modulated by the former, is proportional to the acoustic frequency. But the resonant wavelength between the same order secondary reflection peaks which are modulated by two different primary reflection peaks, is independent of the acoustic frequency. The acoustically induced strains mainly affect the variation of the reflectivities of the primary and secondary reflection peaks. In the experiment, the spectra of SFBG-AOTF with acoustic frequencies of 390 and 710 kHz, are measured. The variation trend of the experimental results accords well with the simulated one.