位置:成果数据库 > 期刊 > 期刊详情页
SAR图像盐渍地分类研究
  • ISSN号:1000-3177
  • 期刊名称:遥感信息
  • 时间:0
  • 页码:64-70
  • 分类:TP79[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]新疆大学资源与环境科学学院,乌鲁木齐830046, [2]新疆大学绿洲生态教育部重点实验室,乌鲁木齐830046
  • 相关基金:干旱区土壤盐渍化微波遥感监测方法研究与验证(40961025)
  • 相关项目:干旱区土壤盐渍化微波遥感监测方法研究与验证
中文摘要:

以渭干河——库车河三角洲绿洲为例,利用SAR数据,采用不同的分类方法来提取该研究区盐渍化土地覆盖信息。首先用Enhanced frost滤波算法对SAR图像进行去噪处理。然后基于灰度共生矩阵理论提取去噪后的SAR图像4种纹理特征,并在不同窗口大小下筛选出有效的纹理特征。最后结合纹理特征分别采用最大似然分类法和SVM分类法对SAR图像进行分类。研究结果表明:基于纹理特征的SVM分类方法,能够有效解决单源数据信息图像分类效果破碎问题;13×13窗口的总精度达到98.2456%,Kappa系数达到0.9763,更有利于遥感图像分类和盐渍化信息监测,是地物遥感信息提取的有效途径。

英文摘要:

Support Vector Machine(SVM) is a new-style classification method.The authors took the Delta oases of Weigan and kuqa rivers as examples,using SAR data and different methods to extract the salinization cover information.Firstly,the speckles from SAR image are eliminated by the enhanced Frost filter algorithm.Then the texture features of the denoised SAR image are extracted based on gray co-occurrence matrix,and the effective texture features are screened through the different size windows.At last,combining with texture features,SAR image is classified with the classical maximum likelihood and SVM classification methods.This study shows that the classification based on SVM method can solve the problem of image broken which was occurred while classification was based on the single-source data,and has the good generalization ability with the high dimension vector.The classification precision of the window of 13×13 is up to 98.2456% and kappa coefficient up to 0.9763.Therefore,the classification method by SVM based on texture characteristics can be adapted to SAR image classification and monitoring of soil salinization,and furthermore,provides an effective way for remote sensing information extraction.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《遥感信息》
  • 中国科技核心期刊
  • 主管单位:国家测绘局
  • 主办单位:科技部国家遥感中心 中国测绘科学研究院
  • 主编:张继贤
  • 地址:北京市海淀区北太平路16号
  • 邮编:100039
  • 邮箱:remotesensing@casm.ac.cn
  • 电话:010-88217813
  • 国际标准刊号:ISSN:1000-3177
  • 国内统一刊号:ISSN:11-5443/P
  • 邮发代号:82-840
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:8820