位置:成果数据库 > 期刊 > 期刊详情页
基于稀疏表示的人脸姿态估计研究
  • ISSN号:1002-8692
  • 期刊名称:《电视技术》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]湖北科技学院计算机科学与技术学院,湖北咸宁437100, [2]武汉大学电子信息学院,湖北武汉430072
  • 相关基金:国家自然科学基金项目(61271256);河南省重大科技攻关项目(072SGZS38042);湖北科技学院博士启动基金项目(BK1418)
中文摘要:

针对人脸光照、遮挡、身份、表情等因素变化的人脸姿态估计难题,结合稀疏表示分类(SRC)方法的优秀识别性能,对SRC理论进行了深入分析,并将其应用于人脸姿态分类。为了解决姿态估计中人脸光照、噪声和遮挡变化问题,将人脸姿态离散化为不同的子空间,每个子空间对应一个类别,据此,提出基于字典学习与稀疏约束的人脸姿态识别方法。通过在公开的XJTU和PIE人脸库上实验表明:所研究的方法对人脸光照、噪声和遮挡变化具有鲁棒性。

英文摘要:

According to the challenges in face pose estimation under different illuminations, occlusions, identity, expressions, and so on, combining with the excellent classification performance of sparse representation classification ( SRC ), a deep analysis on the theory of SRC and its application in face pose classification are made. In order to handle challenges such as variation of face illumination, noises and occlusion, a robust face pose estimation method based on dictionary learning and sparse representation is presented. In which face poses are discrete into different subspaces, each subspace corresponding to a class. Several experiments are performed on XJTU and PIE databases. Recognition results show that the proposed method is suitable for efficient face pose recognition under illumination, noises and occlusion variations.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《电视技术》
  • 北大核心期刊(2011版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:电视电声研究所
  • 主编:许盈(执行主编)
  • 地址:北京市朝阳区酒仙桥北路乙7号
  • 邮编:100015
  • 邮箱:tvea@263.net.cn; dsss@chinajournal.net.cn
  • 电话:010-59570246
  • 国际标准刊号:ISSN:1002-8692
  • 国内统一刊号:ISSN:11-2123/TN
  • 邮发代号:2-354
  • 获奖情况:
  • 第三届国家期刊奖百种重点期刊、中国期刊方阵双百...
  • 国内外数据库收录:
  • 美国剑桥科学文摘,英国科学文摘数据库,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:12712