设R是一个含有非平凡幂等元的环,R’是另一任意环.如果一个双映射Ф:R→R'是Lie可乘映射,即满足对任意A,B∈R有Ф([A,B])=[Ф(A),Ф(B)],则R在满足一定条件下,Ф是几乎可加的,即Ф(A+B)=Ф(A)+Ф(B)+Z'A,B,其中Z'A,B是R'中心中依赖于A和B的元素.应用上面的主要结果,本文证明了在素环、三角代数或没有中心交换投影的von Neumann代数上的Lie可乘双映射是几乎可加的.
Let R be a ring containing a nontrivial idempotent and R' be another ring. Suppose that a bijective mapping Ф:R → R' is a Lie multiplicative mapping, that is, Ф satisfies Ф (AB - BA) = Ф(A) Ф(B) - Ф(B)Ф(A) for all A, B ∈ R. Under a mild condition on R, we prove that Ф is almost additive, that is, Ф(A + B) = Ф(A) + Ф(B) + Z'A,B for all A, B ∈ R, where Z'A,B is an element in the center Z(R') of R' depending on A and B. As applications, we show that every Lie multiplicative bijective von Neumann algebras with no central abelian mapping on prime rings, triangular algebras or projections is almost additive.