在化学气相沉积SiC膜过程中,分别考虑了化学反应的动力学以及基底表面原子的沉积与扩散,利用动力学蒙特卡罗方法,建立了SiC膜{111}取向的三维原子尺度模型,使用MATLAB模拟了原子尺度的SiC膜{111}取向生长过程.模拟结果表明:膜的生长经历了小岛的生成、小岛的合片与扩展、小岛间达到动态平衡三个阶段.随着温度的升高,膜的生长速率、表面粗糙度以及膜的厚度都增大.随着生长速率的增大,表面粗糙度增大,相对密度减小.模拟结果与理论和实验具有较好的吻合性.
In the process of SiC film fabricated by chemical vapor deposition method, kinetic process of chemical reaction in reaction zone and the deposition and diffusion of matrix surface were studied respectively. With kinetic Monte Carlo method, a three-diraensional atomic-scale of {111}-oriented SiC film is established and its growth process is simulated by MATLAB. The results show that the growth of film has three stages including form of little islets, mergence and expanding of islets and dynamic balance between islets. With the increase of substrate temperature, deposition rate, surface roughness and height of film all increase. When the deposition rate increases, surface roughness increases while relative density decreases. Moreover, the simulation results are in well agreement with the relevant theory and experimental result.