位置:成果数据库 > 期刊 > 期刊详情页
一种用于单脉冲成像的自聚焦算法
  • ISSN号:0372-2112
  • 期刊名称:《电子学报》
  • 分类:TN958[电子电信—信号与信息处理;电子电信—信息与通信工程]
  • 作者机构:南京航空航天大学电子信息工程学院雷达成像与微波光子技术教育部重点实验室,江苏南京210016
  • 相关基金:国家自然科学基金(61301212); 航空科学基金(20132052030,20142052020); 中央高校基本科研业务费专项资金(NP2015504); 中国博士后科学基金(2012M511750); 国防基础科研计划(B2520110008); 江苏省研究生培养创新工程(SJLX_0131); 江苏高校优势学科建设工程资助课题
中文摘要:

针对条带模式合成孔径雷达回波缺失数据,提出了一种利用压缩感知恢复缺失数据并成像的方法。将条带数据分块为多个子孔径数据,对子孔径利用压缩感知恢复缺失数据并拼接得到条带数据,缩短了整个数据的恢复时间,推导了压缩感知处理的基矩阵和测量矩阵。运用最大似然估计的特征向量方法(eigenvector method for maximum likelihood estimation,EMMLE)实现了子孔径缺失数据的自聚焦,满足了压缩感知对图像的稀疏要求。利用压缩感知恢复完整的相位误差信号,解决了子孔径补偿相位误差数据的拼接问题。最后通过对恢复的雷达回波数据成像并自聚焦校正了距离徙动,得到了聚焦良好的完整图像,提高了缺失数据的成像质量。

英文摘要:

A recovery and imaging method for missing data of the strip-map mode synthetic aperture radar (SAR) based on compressive sensing (CS) is introduced. The strip-map data is segmented into several sub-ap- ertures, which results in reducing the recovery time significantly. The sub-aperture missing data can be restored by CS and be stitched to the strip-map data. The basis matrix and the measurement matrix for CS are proposed. The sub-aperture data are autofocused by the eigenvector method for maximum-likelihood estimation to meet the sparse requirement of the reconstructed image and the intact phase error data is restored by CS in order to stitch the sub-aperture. A high quality image of the restored data can be obtained by the conventional imaging method and autofocus which corrects the range migration.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《电子学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国电子学会
  • 主编:郝跃
  • 地址:北京165信箱
  • 邮编:100036
  • 邮箱:new@ejournal.org.cn
  • 电话:010-68279116 68285082
  • 国际标准刊号:ISSN:0372-2112
  • 国内统一刊号:ISSN:11-2087/TN
  • 邮发代号:2-891
  • 获奖情况:
  • 2000年获国家期刊奖,2000年获国家自然科学基金志项基金支持,中国期刊方阵“双高”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国英国皇家化学学会文摘,中国北大核心期刊(2000版)
  • 被引量:57611