首先简要地介绍了磁性材料中磁结构、磁畴结构和拓扑磁结构以及相互之间的关系.一方面,磁畴结构由材料的磁结构、内禀磁性和微结构因素决定;另一方面,磁畴结构决定了材料磁化和退磁化过程以及技术磁性.拓扑学与材料物理、材料性能的联系越来越紧密.最近的研究兴趣集中在一些拓扑磁性组态,如涡旋、磁泡、麦纫、斯格米子等.研究发现这些拓扑磁结构的拓扑性质与磁性能密切相关.然后从尺寸效应、缺陷、晶界三个方面介绍国际学术界在磁结构、磁畴结构和拓扑磁结构方面的进展.最后介绍了在稀土永磁薄膜材料的微观结构、磁畴结构和磁性能关系、交换耦合纳米盘中的拓扑磁结构及其动力学行为方面的工作.通过对文献的评述,得到以下结论:开展各向异性纳米复合稀土永磁材料的研究对更好地利用稀土资源具有重要的意义.可以有目的地改变材料的微结构,可控地进行磁性材料的磁畴工程,最终获得优秀的磁性能.拓扑学的概念正在应用于越来越多的学科领域,在越来越多的材料中发现拓扑学的贡献.研究磁畴结构、拓扑磁性基态或者激发态的形成规律以及动力学行为对理解量子拓扑相变以及其他与拓扑相关的物理效应是十分重要的.也会帮助理解不同拓扑学态之间相互作用的物理机制及其与磁性能之间的关系,同时拓展拓扑学在新型磁性材料中的应用.
This article first gives a brief review of magnetic structures, magnetic domains and topological magnetic textures and their relations. On the one hand, the magnetic domains are determined by the magnetic structures, the intrinsic magnetic properties and the micro-structural factors of a material. On the other hand, the magnetic domains could con- trol the magnetization and demagnetization processes and also the technical magnetic properties of a material. Topology is found to have a close relation with physical properties of material. Recent interest has focused on topological mag- netic textures, such as vortex, bubble, meron, skyrmion, and it has been found that the topological behaviors of these topological textures are closely related with magnetic properties of a material. Then this article introduces recent advances in magnetic structures, magnetic domains and topological magnetic textures, from views of the size effect, defects and interfaces, Finally, this article reviews briefly some results of investigation on the relations between microstructures, magnetic domains and magnetic properties of rare-earth permanent magnetic thin films, the topological magnetic textures and their dynamic behaviors of exchange coupled nanodisks. It has been concluded from the reviews on the literature that the investigation on anisotropic exchange-coupled rare-earth permanent magnets with high performance benefits the high efficient utilization of rare-earth resources. One could achieve optimal magnetic properties through magnetic domain engineering by adjusting the microstructures of magnetic materials. The concepts of topology is ap- plied to various research fields, while the contributions from topological behaviors to physical properties are discovered in different materials. The researches on magnetic domains, topological magnetic ground state and excitation states and their dynamic behaviors are very important for a better understanding of quantum topological phase transitions and other topological relevant phenomena.