Y.Alavi,A.J.Boals,G.Chartrand,P.ErdSs和O.R.Oellermann提出下面的猜想:已知整数a1,a2,…,ak,满足n≤ai≤2n-2,1≤i≤k,且a1+a2+…+ak=rt(n+1)/2,则S=(1,2,…,n)包含有k个互不相交子集S1,S2,…,Sk,满足ai=∑(Si),1≤i≤k。推广该猜想,得到下面的定理:已知整数a1,a2,…,ak,满足ai≥n,1≤i≤k,且a1+a2+…+a4≤n(n+1)/2,则S={1,2,…,n)包含有k个互不相交子集.S1,S2,…,Sk,满足ai=∑(Si),1≤i≤k。由此定理易推出K.Ando,S.Gervacio和M.Kano证明的一个主要定理。参考文献中的一个错误同时被更正。
Y.Alavi, A.J.Boals, G.Chartrand, P.Erdos and O.R.Oellermann have proposed the following conjecture: Let a1,a2,…,ak be integers which satisfy n≤ai≤2n-2,1≤i≤k, and a1+a2+…+ak=rt(n+1)/2. Then S={1,2, ... ,n} contains k disjoint subsets S1,S2, ...,S which satisfy i (1≤i≤k), ai=∑(Si). As a natural generalization of the conjecture, we have obtained the following theorem: Let a1,a2,…,ak be integers which satisfy a≥n, 1≤i≤k, and a1+a2+...+ak≤n(n+1)/2. Then S={1,2,…,n} contains k disjoint subsets S1,S2, … ,Sk that satisfy i(1≤i≤k) and ai=∑(Si). With the theorem, we have proved the main theorem obtained by K.Ando, S.Gervaeio and M.Kano. At the same time, an error in the bibliogra- phy is corrected.