位置:成果数据库 > 期刊 > 期刊详情页
深度学习在目标视觉检测中的应用进展与展望
  • ISSN号:0254-4156
  • 期刊名称:《自动化学报》
  • 时间:0
  • 分类:TM721.1[电气工程—电力系统及自动化]
  • 作者机构:[1]中国科学院自动化研究所复杂系统管理与控制国家重点实验室,北京100190, [2]中国科学院大学,北京100049, [3]青岛智能产业技术研究院,青岛266000, [4]国防科学技术大学军事计算实验与平行系统技术研究中心,长沙410073
  • 相关基金:国家自然科学基金(61533019,61304200),国家留学基金(201504910397)资助
中文摘要:

目标视觉检测是计算机视觉领域的一个重要问题,在视频监控、自主驾驶、人机交互等方面具有重要的研究意义和应用价值.近年来,深度学习在图像分类研究中取得了突破性进展,也带动着目标视觉检测取得突飞猛进的发展.本文综述了深度学习在目标视觉检测中的应用进展与展望.首先对目标视觉检测的基本流程进行总结,并介绍了目标视觉检测研究常用的公共数据集;然后重点介绍了目前发展迅猛的深度学习方法在目标视觉检测中的最新应用进展;最后讨论了深度学习方法应用于目标视觉检测时存在的困难和挑战,并对今后的发展趋势进行展望.

英文摘要:

Visual object detection is an important topic in computer vision, and has great theoretical and practical merits in applications such as visual surveillance, autonomous driving, and human-machine interaction. In recent years, significant breakthroughs of deep learning methods in image recognition research have arisen much attention of researchers and accordingly led to the rapid development of visual object detection. In this paper, we review the current advances and perspectives on the applications of deep learning in visual object detection. Firstly, we present the basic procedure for visual object detection and introduce some newly emerging and commonly used data sets. Then we detail the applications of deep learning techniques in visual object detection. Finally, we make in-depth discussions about the difficulties and challenges brought by deep learning as applied to visual object detection, and propose some perspectives on future trends.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《自动化学报》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国自动化学会 中国科学院自动化研究所
  • 主编:王飞跃
  • 地址:北京东黄城根北街16号
  • 邮编:100717
  • 邮箱:aas@ia.ac.cn
  • 电话:010-64019820
  • 国际标准刊号:ISSN:0254-4156
  • 国内统一刊号:ISSN:11-2109/TP
  • 邮发代号:2-180
  • 获奖情况:
  • 1997年获全国优秀期刊奖,1985、1990、1996、2000年获中国科学院优秀期刊二等奖,2002年获国家期刊奖
  • 国内外数据库收录:
  • 美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:27550