位置:成果数据库 > 期刊 > 期刊详情页
基于即时学习的集成神经网络及其干点预测
  • ISSN号:1006-3080
  • 期刊名称:《华东理工大学学报:自然科学版》
  • 时间:0
  • 分类:TP183[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:华东理工大学化工过程先进控制和优化技术教育部重点实验室,上海200237
  • 相关基金:国家“973”计划(2013CB733605);国家自然科学基金(21176073)
中文摘要:

针对单个神经网络泛化能力差、对不同样本预测精度波动大的问题,提出了一种基于即时学习集成神经网络方法。首先,基于训练样本,建立多个不同的神经网络模型。其次,根据即时学习的思想,在对样本进行预测时,在训练样本中寻找与预测样本最接近的若干邻近样本,根据各网络对邻近样本的训练误差,即时形成各神经网络的集成权重,实时构造集成神经网络模型,对预测样本进行预测。最后,将该方法应用于初顶石脑油干点的预测,相比于文献中提出的方法,得到了更好的预测结果。

英文摘要:

Aiming at the poor generalization ability of single neural networks and large fluctuations of test accuracy for different samples,this paper presents an integrated neural network method based on the just-in-time learning. Firstly, several different neural network models are established based on the training samples. Secondly, several adjacent samples closest to the predicted samples are selected based on the just-in-time learning while predicting the samples. According to the training errors of the sub-networks on the adjacent samples,the integrated weights of the neural networks are generated immediately to establish the integrated neural network model in real time for predicting the test samples. Finally,the proposed method is applied to predict the naphtha dry point and a better prediction result is achieved, compared with the existing methods.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《华东理工大学学报:自然科学版》
  • 北大核心期刊(2011版)
  • 主管单位:教育部
  • 主办单位:华东理工大学
  • 主编:刘红来
  • 地址:上海梅陇路130号
  • 邮编:200237
  • 邮箱:ecustxbbzz@ecust.edu.cn
  • 电话:021-64252666
  • 国际标准刊号:ISSN:1006-3080
  • 国内统一刊号:ISSN:31-1691/TQ
  • 邮发代号:4-382
  • 获奖情况:
  • 2001年被国家新闻出版总署评为"中国期刊方阵科技...,2002年获"第五届全国石油和化工行业优秀期刊二等奖",2004年获"全国高校优秀科技期刊二等奖",2006年荣获"首届中国高校优秀科技期刊奖"以及"第...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:10083