采用蒙特卡罗(MC)方法模拟了Fe—C合金在奥氏体。铁素体相变的平衡温度之上的形变诱导动态相变过程.通过建立合适的MC规则,在一个MC模型中同时实现了奥氏体一铁素体相变、铁素体-奥氏体逆相变以及奥氏体动态再结晶过程的模拟.同时,一个基于矢量变换的拓扑模型被嵌人此MC相变模型,用来跟踪由于塑性变形导致的晶粒形貌变化.在此基础上模拟分析了动态相变过程中铁素体的形成特点,讨论了由于相变、逆相变和动态再结晶交互作用所带来的影响.
The deformation induced dynamic transformation (DIDT) of a Fe-C alloy above austenite transformation equilibrium temperature is simulated by using a Q-state ports Monte Carlo (MC) model. The austenite-to-ferrite transformation, dynamic recrystallization (DRX) of austenite and ferrite, and the ferrite-to-austenite reverse transformation can be simulated simultaneously in the same MC model by building suitable MC transition rules. Meanwhile, an affine transformation model based on vector operation is also coupled with the MC model for the first time for tracking the changes in grain shape during dynamic transformation. The formation of ferrite during DIDT and the influence of austenite DRX on DIDT are simulated based on this MC model. The simulation results show that the competition between the DRX of anstenite and the anstenite-to-ferrite transformation causes the oscillation behaviour of ferrite kinetics.