当包括的尺寸缩小到纳米时,接口精力在它附近在变丑起一个重要作用。在现在的纸,我们在根据表面弹性理论在有弹性的媒介嵌入的球状的 nano 包括附近在有弹性的地上考虑接口精力的效果。用 Boussinesq Sadowsky 潜在的函数方法,我们在受到的包括附近获得变丑域一在无穷的一致地单轴的装载。结果证明 nano 包括附近的有弹性的地强烈取决于包括的接口性质,尺寸和形状。这些新特征可能是有用的理解 nanosized 不同类的各种各样的相关机械表演。
When the size of an inclusion shrinks to nanometers, interface energy plays an important role in the deformation around it. In the present paper, we consider the effect of interface energy on the elastic fields near a spheroidal nanoinclusion embedded in an elastic medium on the basis of surface elasticity theory. Using Boussinesq-Sadowsky potential function method, we obtain the deformation field near the inclusion subjected to a uniformly uniaxial loading at infinity. The results show that the elastic fields near the nano-inclusion depend strongly on the interface properties, the size and shape of inclusion. These new characteristics may be helpful to understand various relevant mechanical performances of nanosized inhomogeneities.