通过静电纺丝制备了平均直径为350nm的聚丙烯腈(PAN)纳米纤维.将PAN纳米纤维分别在250,265和280℃温度下预氧化1h后,将它们在1000℃下碳化得到碳纳米纤维.通过扫描电镜、红外光谱、差示扫描量热分析和X射线粉末衍射分析对PAN纳米纤维、预氧化后的纳米纤维及碳纳米纤维的形貌、热性能和化学结构进行了表征.结果表明,PAN纤维的最佳预氧化温度为280℃.在该温度预氧化后所得碳纤维的导电性最好,电导率为(13±0.58)S/cm.
Polyacrylonitrile (PAN) precursor nanofibers with average diameter of 350 nm were synthesized by electrospinning. They were preoxidized at 250,265 and 280 X2 for 1 h, followed by carbonization at 1 000 ℃ to fabricate carbon nanofibers. The morphology,thermal property,and chemical structure of PAN precursor nanofibers, preoxidized PAN fibers and carbon nanofibers,were characterized by SEM,IR,DSC and XRD. It was found that the optimum preoxidation temperature for PAN precursor fibers was 280 ℃. The conductivity of the 1 000 X2 carbonized PAN nanofibers after 280℃ preoxidation was (13 ±0.58) S/cm, and the conductivity was highly dependent on the preoxidation temperature.