为了研究汽轮发电机转子大齿导条、导电槽楔和转子铁心等转子阻尼结构在大扰动低频振荡过程中的作用,首先建立了用于研究大扰动低频振荡过程中汽轮发电机转子各部分阻尼结构作用的场-路耦合时步有限元模型,并通过实验进行了验证;然后采用该模型研究了汽轮发电机转子各部分阻尼结构大扰动低频振荡过程中的作用,分析了三部分阻尼单独作用和共同作用时,对大扰动低频振荡影响较大的阻尼结构;最后研究了不同材料转子槽楔对汽轮发电大扰动低频振荡过程的影响.结果表明:汽轮发电机转子阻尼作用可以有效抑制大扰动后的低频振荡过程;在三部分阻尼中转子槽楔所起的作用较大,且转子采用铝合金槽楔对于抑制大扰动低频振荡的效果明显好于不锈钢槽楔.
It aims to study the effect of rotor damping structure which contains damping bars,the rotor iron core and rotor slot wedges on low frequency oscillation (LFO) under large disturbance.Firstly,the time stepping finite element model of turbine generator was built to study the effect of rotor damping structure on LFO and the model was tested by the experiment of 7.5 kW model machine.Then,the influence of rotor damping on LFO under large disturbance was studied under the individual and combined effect of three components of rotor damping structures.Finally,the influence of different rotor slot wedge material on LFO was studied.The results show that the rotor damping structure can suppress LFO under large disturbance.The rotor slot wedge plays a more vital role during LFO after large disturbance and the aluminum alloy slot wedge has a better suppression effect than that made of stainless steel.