位置:成果数据库 > 期刊 > 期刊详情页
基于S变换与PNN的电能质量多扰动检测
  • 期刊名称:仪器仪表学报
  • 时间:0
  • 页码:1668-1673
  • 语言:中文
  • 分类:TM712[电气工程—电力系统及自动化]
  • 作者机构:[1]湖南大学电气与信息工程学院,长沙410082
  • 相关基金:国家自然科学基金(60872128)资助项目
  • 相关项目:改进FFT动态信号分析方法及在电力谐波检测中的应用
中文摘要:

针对电能质量检测与分类需求,提出了一种基于S变换与概率神经网络的电能质量扰动检测和分类方法,应用S变换对电能质量扰动样本信号进行时频分析,提取信号的特征量,利用获得的特征量训练概率神经网络,并进行分类。仿真实验证明基于S变换与概率神经网络融合的电能质量多扰动分类方法训练速度快、分类准确度高,在训练样本数少、噪声影响大和多扰动信号并存时分类识别效果好。在此基础上研制了基于虚拟仪器的电能质量扰动检测系统,给出了系统构成与工作流程,现场试验验证了系统的准确性。

英文摘要:

A novel detection and classification method of power quality disturbances based on S-transform and probabilistic neural network (PNN) is proposed. S-transform is applied to perform time-frequency analysis on the power quality disturbance samples, from whose results the features of the samples are extracted. These features are then used to train a PNN for disturbance classification. Simulation results show that this method has faster training speed and relatively high classification accuracy. The proposed method can also give good classification for small training set with high level noises and multiple types of disturbances. Furthermore, a power quality disturbance detection system based on virtual instrument was developed. The system structure and work flow are given. Experimental results of on-spot operation verify the veracity of the system.

同期刊论文项目
同项目期刊论文