位置:成果数据库 > 期刊 > 期刊详情页
偏序集、包含度与形式概念分析
  • ISSN号:0254-4164
  • 期刊名称:《计算机学报》
  • 时间:0
  • 分类:TP301[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]山西大学计算机与信息技术学院,太原030006
  • 相关基金:本课题得到国家自然科学基金(70471003,60275019)、高等学校博士学科点专项科研基金(20050108004)和山西省自然科学基金(20031036,20041040,20041014)资助.
中文摘要:

在形式背景上建立了3个偏序集:G偏序集、M偏序集和GM偏序集,并将包含度的概念引入到3个偏序集上,讨论了偏序集上的偏序关系和包含度与概念格之间的联系,并且证实了形式概念分析中的内涵、外延和蕴涵规则均可归结为偏序集上的序表示及包含度表示,这将有助于人们深刻理解形式概念分析中概念的含义及概念格的结构,为从定量分析角度研究形式概念分析提供了依据。

英文摘要:

Formal Concept Analysis (FCA) is an order-theoretic method for the mathematical analysis of scientific data, pioneered by R. Wille in mid 80's. Over the past twenty years, FCA has been widely studied and become a powerful tool for machine learning, software engineering and information retrieval. In addition to being a technique for classifying and defining concepts from data, FCA may be exploited to discover implications among the objects and the attributes. On the other hand, inclusion degree theory proposed by Prof. Zhang W. X. is a measure theory for order theory. In fact the synthesis between FCA and inclusion degree theory will be greatly advanta- geous to the further development of such domains as intelligent control, pattern recognition, knowledge processing etc. This paper serves to introduce partially ordered set (poset) and inclusion degree theory to FCA. For this, the authors establish three posets, namely, G poset, M poset as well as GM poset and based on the three posets, they define three inclusion degrees on them. Then they show the relationship between the posets and concept lattice, and prove that the basic concepts such as intents, extents and implications can be reconstructed either by the partial orders or by the inclusion degrees of the posets. These results will be very helpful for people to understand the essence of concepts and the structure of concept lattice in FCA, and can be regarded as the main foundation of quantitative measures which are defined for FCA.

同期刊论文项目
期刊论文 43 会议论文 1 著作 1
期刊论文 55 会议论文 4 获奖 1 著作 1
同项目期刊论文
期刊信息
  • 《计算机学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国计算机学会 中国科学院计算技术研究所
  • 主编:孙凝晖
  • 地址:北京中关村科学院南路6号
  • 邮编:100190
  • 邮箱:cjc@ict.ac.cn
  • 电话:010-62620695
  • 国际标准刊号:ISSN:0254-4164
  • 国内统一刊号:ISSN:11-1826/TP
  • 邮发代号:2-833
  • 获奖情况:
  • 中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国数学评论(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:48433