提出一种基于局部判别正切空间排列(iocal discriminative tangent space alignment,LDTSA)的高光谱影像降维方法。LDTSA源于局部正切空间排列(LTSA)中的排列机制,在一个局域块内利用线性局部正切平面对类内样本的流形结构建模,同时还考虑到类间判别信息以最大化判别边界。利用多幅高光谱数据进行降维和分类试验。结果表明,LDTSA主要有三个优点:①在小样本问题上性能稳定;②在降维过程中保持类别间的判别信息;③有效挖掘数据集的几何流形结构。
A local discriminative tangent space alignment (LDTSA) based dimension reduction method is proposed, It applies the idea of part optimization and whole alignment and considers encoding the geometric and discrimina- tive information in a local patch, The experiment demonstrate the effectiveness of LDTSA compared with represent- ative dimensionality reduction algorithms, O LDTSA avoids the small-sample-size problern② LDTSA preserves the discriminative ability; ③LDTSA has the ability to detect the intrinsic structure from the hyperspectral data.