位置:成果数据库 > 期刊 > 期刊详情页
关于Pucci算子的抛物方程的Liouville定理
  • 时间:0
  • 分类:O175.26[理学—数学;理学—基础数学]
  • 作者机构:[1]华北电力大学数理学院,北京102206
  • 相关基金:National Natural Science Foundation of China(11101141); Scientific Research Foundation for the Returned Overseas Chinese Scholars of the State Education Ministry; Doctoral Funding of North China Electric Power UniversityThe author would like to thank Prof. P. Felmer for useful discussion.
作者: 刘勇[1]
中文摘要:

关于含有Laplace算子的超线性抛物方程的一个经典结果是Liouville型的定理.由于这些定理在应用中的重要性,研究了关于Pucci算子的抛物方程的Liouville型定理.在空间变量为1维的情形下,Pucci算子的性质相对容易分析,对这一特殊情形,证明了对应的抛物方程没有全局有界的正解.

英文摘要:

One classical result for the superlinear parabolic equation involving Laplacian operator is the Liouville type theorem.Due to the importance of these kind of theorems,the Liouville type theorem for parabolic equation involving Pucci ’ s operator is studied in this paper.When the space variable is one dimensional,it is relatively easy to analyze the Pucci operator.The main result of this paper states that in this case,the corresponding equation does not have global positive bounded solution.

同期刊论文项目
同项目期刊论文