位置:成果数据库 > 期刊 > 期刊详情页
基于小生境遗传自适应RBFN的歼击机故障认定方法
  • ISSN号:1005-2615
  • 期刊名称:《南京航空航天大学学报》
  • 时间:0
  • 分类:TP183[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]南京航空航天大学自动化学院,南京 210016
  • 相关基金:国家自然科学基金(60234010)重点资助项目;国防基础科研基金(K1603060318)资助项目;航空科学基金(05E52031)资助项目.
中文摘要:

在模式识别领域中,如何实现更高精度的分类一直是个核心问题。本文提出了将自适应RBF神经网络与小生境遗传算法相结合的方法,其中自适应RBF神经网络通过对样本判断,自动实现对RBF网络添加新的隐层节点或者将样本归于已存在的隐层节点所属的类;小生境遗传算法用于寻找最优的网络宽度值。两者相结合最后确定一个隐层节点数与类别数相同的俭省的网络。用歼击机故障数据进行仿真,比较结果表明此方法能实现更高精度的故障认定。

英文摘要:

How to obtain a more accurate class separability is a key question in the field of classification application. An adaptive radial basis function(ARBFN) neural network is combined with the niche genetic algorithm(NGA). The ARBFN is used to add new hidden layer neurons or to determine the certain class and the input vector belongs to the class. The niche GA is used to search for the best value for the parameter of RBFN by estimating the input vectors. The method can select a parsimonious network architecture. Compared with other methods, the result shows that the method can achieve fault diagnosis with more high accuracy.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《南京航空航天大学学报》
  • 北大核心期刊(2011版)
  • 主管单位:工业和信息化部
  • 主办单位:南京航空航天大学
  • 主编:宣益民
  • 地址:南京市御道街29号
  • 邮编:210016
  • 邮箱:tnuaa@nuaa.edu.cn
  • 电话:025-84892726
  • 国际标准刊号:ISSN:1005-2615
  • 国内统一刊号:ISSN:32-1429/V
  • 邮发代号:28-140
  • 获奖情况:
  • 2005获高校科技期刊先进集体,2006获中国高校优秀科技期刊奖,2007获江苏省优秀期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),德国数学文摘,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:11886