利用经典的分析方法导出了两类高斯超几何多项式:2F1(-n,a;b;z)和2F1(-n,λ;-n+μ;z)零点的渐近分布。应用Mathematica软件,给出了相关定理的直观说明。
Some classical analytic methods and techniques are used to analyze the asymptotic distribution of zeros of certain classes of Gauss hypergeometric polynomials: 2 F1(-n,a;b;z) and 2 F1(-n,λ;-n + μ;z).Numerical evidence and graphical illustrations of the clustering of zeros on certain curves are generated by Mathematica.