本文研究了拟平衡问题解的存在性问题.利用对Subinvex函数在Rl空间上的类变分问题的讨论及凸规划问题与平衡问题的同解性理论,把次不变凸(Subinvex)函数特征由原Rl空间推广到一般拓扑线性空间的平衡问题上,得到一类称之为拟平衡问题的解的存在性问题相关理论.
The problem of quasi-equilibrium problems' solutions is researched in this paper.By discussing of subinvex functions' quasi-variational problem on space Rland the same solutions theory of convex-programming and equilibrium,we solve the problems of mending the feature of the subinvex function to topological linear space from the original space Rl.The solution of quasi-equilibrium problems is obtained.