设N为Banach空间X上的套,D为AlgN的弱闭Jordan模.若对任意N∈N,dim(N/N_)≠1与N拓扑可补至少有一个成立,则N必为AlgN的模.
Let ■ be a nest on a Banach space X,and ■ be a weakly closed Jordan module of Alg■.Suppose that for every N ∈■,either dim(N/N_)≠1 or N is topologically complementary.Then ■ must be an associative module of Alg■.