A simple model based on the statistics of individual atoms [Europhys. Lett. 94 40002(2011)] or molecules [Chin.Phys. Lett. 29 080504(2012)] was used to predict chemical reaction rates without empirical parameters, and its physical basis was further investigated both theoretically and via MD simulations. The model was successfully applied to some reactions of extensive experimental data, showing that the model is significantly better than the conventional transition state theory. It is worth noting that the prediction of the model on ab initio level is much easier than the transition state theory or unimolecular RRKM theory.
A simple model based on the statistics of individual atoms [Europhys. Lett. 94 40002 (2011)] or molecules [Chin. Phys. Lett. 29 080504 (2012)] was used to predict chemical reaction rates without empirical parameters, and its physical basis was further investigated both theoretically and via MD simulations. The model was successfully applied to some reactions of extensive experimental data, showing that the model is significantly better than the conventional transition state theory. It is worth noting that the prediction of the model on ab initio level is much easier than the transition state theory or unimolecular RRKM theory.