针对红外探测系统中单帧红外图像中低信噪比小目标检测问题,提出一种基于边缘化粒子滤波算法的检测前跟踪方法。该方法根据混合状态滤波的思想,直接利用原始图像数据,采用粒子数确定的持续概率密度函数和新生概率密度函数,推导出目标存在的概率。对没有出现在量测方程中的线性状态变量边缘化,用卡尔曼滤波器进行时间更新。实验结果证明,该方法能够减少目标跟踪的均方根误差,提高目标检测率,对低信噪比目标非常有效。
A Track Before Detection(TBD) method based on marginalized particle filter is proposed for the single-frame low Signal to Noise Ratio(SNR) infrared small target detection and tracking in infrared detection system.Under the idea of mixture state filter,the method is directly used on the original image data.The number of continue probability density particles and new birth probability density particles are deterministic and the probability of the existence of the target is derived.Linear variables disappeared in the measurement equation are marginalized and updated by Kalman filter.Experimental results prove that this method can effectively reduce the root mean square error of target tracking and improve target detection rate,especially for low SNR target.