An array of platinum microelectrodes was designed and fabricated. The adsorption of CO on such a Pt microelectrode (μ-Pt) was investigated by employing microscope in situ FTIR spectroscopy. A nanostructured film is formed at the surface of μ-Pt (denoted as μ-Pt(R)) when it has been subjected to a treatment of fast potential cycling. Abnormal infrared effects (AIREs) were observed in CO adsorption on the surface of μ-Pt(R), consisting of the inversion of the IR bipolar CO band and the extensively enhanced IR adsorption of COad species.
An array of platinum microelectrodes was designed and fabricated. The adsorption of CO on such a Pt microelectrode (μ-Pt) was investigated by employing microscopein situ FTIR spectroscopy. A nanostructured film is formed at the surface of μ-Pt (denoted as μ-Pt(R)) when it has been subjected to a treatment of fast potential cycling. Abnormal infrared effects (AIREs) were observed in CO adsorption on the surface of μ-Pt(R), consisting of the inversion of the IR bipolar CO band and the extensively enhanced IR adsorption of COad species.