位置:成果数据库 > 期刊 > 期刊详情页
基于计算机视觉技术的番茄叶部病害识别
  • ISSN号:0513-353X
  • 期刊名称:《园艺学报》
  • 时间:0
  • 分类:S641.2[农业科学—蔬菜学;农业科学—园艺学]
  • 作者机构:[1]中国农业科学院蔬菜花卉研究所,北京100081, [2]北京师范大学数学学院,北京100875
  • 相关基金:国家‘863’项目(2006AA10Z210); 国家自然科学基金项目(60678052);国家自然科学基金重点项目(10531040); 农业部园艺作物遗传改良重点开放实验室项目; 国家基础科学人才培养基金项目(J0630103)
中文摘要:

以计算机视觉技术为手段,结合图像处理和模式识别技术,研究了番茄早疫病、晚疫病、叶霉病和棒孢叶斑病等4种叶部病害的自动识别方法。建立了一套适用于室内操作的图像采集处理系统,可进行病害样本图像的采集、预处理和病斑区域的分割。提取了每个病斑区域的9个颜色参数、5个纹理参数和4个形状参数,同时采用逐步判别与贝叶斯判别相结合和主成分分析与费歇尔判别相结合的两种方法实现特征参数的提取和判别模型的构建。逐步判别从提取的18个特征参数中选择了12个参数用于构建贝叶斯判别模型,结果对训练样本和测试样本的识别准确率分别达到100%和94.71%。主成分分析则将18个特征参数综合成2个新变量,构建的费歇尔判别函数对样本的总体识别准确率为98.32%。两种方法均获得了较好的分类效果,说明利用计算机视觉技术可以实现对番茄叶部病害的快速、准确识别,为实现番茄病害的田间实时在线检测提供了可能。

英文摘要:

Computer vision combined with digital image processing and pattern recognition techniques were evaluated for the detection of diseased tomato leaves infected with leaf mold(Fulvia fulva),early bligh(tAlternaria solani),late blight(Phytophthora infestans),and leaf spot(Corynespora cassiicola).An image acquisition system was established to acquire leaf images.The image pre-processing techniques were applied to segment the lesion regions from the diseased leaves.And then nine color characteristics,five texture characteristics and four shape characteristics of the lesion regions were extracted.To classify the four kinds of tomato foliage diseases,stepwise discriminant analysis combined with Bayes discriminant analysis and principal component analysis combined with Fisher discriminant analysis were executed to develop the discriminant models.By the stepwise discriminant analysis,we selected 12 characteristics from the original 18 variables to develop the Bayes discriminant function, and results showed that the classification accuracies for the training and testing sets achieved 100% and 94.71% respectively.By principal component analysis,the 18 variables were reduced to two principal components(PCs).The classification model based on the two PCs achieved classification accuracy of 98.32%.These results indicated that it is feasible to identify and classify tomato diseases using computer vision technology.This preliminary study, which was done in a closed room with restrictions to avoid interference of the field environment, showed that there is a potential to establish an online field application in tomato diseases detection based on computer vision and image processing techniques.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《园艺学报》
  • 中国科技核心期刊
  • 主管单位:中国科协
  • 主办单位:中国园艺学会
  • 主编:杜永臣
  • 地址:北京市中关村南大街12号
  • 邮编:100081
  • 邮箱:ivfyyxb@mail.caas.net.cn
  • 电话:010-68919523
  • 国际标准刊号:ISSN:0513-353X
  • 国内统一刊号:ISSN:11-1924/S
  • 邮发代号:82-471
  • 获奖情况:
  • 第一届全国优秀期刊奖,中国科协第三届优秀期刊奖,第二届国家期刊奖提名奖,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),英国农业与生物科学研究中心文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:43371