位置:成果数据库 > 期刊 > 期刊详情页
基于边缘特征引导的深度图像超分率重建
  • ISSN号:1000-386X
  • 期刊名称:《计算机应用与软件》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:合肥工业大学计算机与信息学院图像信息处理研究室,安徽合肥230009
  • 相关基金:国家自然科学基金项目(614031160,61273237); 中国博士后基金项目(2014M560507)
中文摘要:

针对TOF(Time of Flight)相机深度图像在超分辨重建过程中易出现边缘模糊、纹理映射问题,在联合双边上采样滤波器的基础上提出一种基于深度图像自身边缘特征引导的超分辨重建方法。通过低分辨深度图像的边缘特征引导,将深度图像分为不同的区域,根据滤波区域性质的不同,对联合双边上采样滤波器模型中的颜色相似项进行不同加权。同时为了进一步保持图像边缘,在深度图像边缘部分加入一个结构保持项。最后利用联合双边上采样滤波器模型重建出高分辨深度图像。实验结果表明,该方法不仅提高了TOF深度图像的分辨率,而且很好地保护了深度图像的边缘结构,取得了较好的效果。

英文摘要:

It is prone to edge blurring and texture copying in the depth map from TOF camera super-resolution process,a new super-resolution reconstruction method based on the depth map 's edge feature-guided is proposed.According to the edge feature of low resolution depth map,the depth map is divided into different regions and then the different color similarity weighting is calculated along with the different filtering regions. In order to protect the image edge further,a structure preserved term is added in the edge region. Finally,the high resolution depth map is calculated by using the joint bilateral up-sampling filter model. The experimental results show that the proposed method not only improves the resolution of depth map from TOF camera,but also protects the image edge structure and achieves a well result.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用与软件》
  • 北大核心期刊(2011版)
  • 主管单位:上海科学院
  • 主办单位:上海市计算技术研究所 上海计算机软件技术开发中心
  • 主编:朱三元
  • 地址:上海市愚园路546号
  • 邮编:200040
  • 邮箱:cas@sict.stc.sh.cn
  • 电话:021-62254715 62520070-505
  • 国际标准刊号:ISSN:1000-386X
  • 国内统一刊号:ISSN:31-1260/TP
  • 邮发代号:4-379
  • 获奖情况:
  • 全国计算机类中文核心期刊
  • 国内外数据库收录:
  • 波兰哥白尼索引,美国剑桥科学文摘,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2011版),中国北大核心期刊(2000版)
  • 被引量:27463