位置:成果数据库 > 期刊 > 期刊详情页
采用信息排序的SuperParent算法的研究
  • ISSN号:1000-7024
  • 期刊名称:《计算机工程与设计》
  • 时间:0
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]北京交通大学计算机与信息技术学院,北京100044, [2]北方民族大学计算机科学与工程学院,宁夏银川750021
  • 相关基金:国家自然科学基金项目(71061001);北方民族大学科研基金项目(2011y027)
中文摘要:

为了提高贝叶斯分类器的分类性能,Keogh提出了以分类效率为基础的扩展贝叶斯网络分类算法SuperParent—TAN,这是一种依赖一个属性(onedependenceestimator)的贝叶斯网络。这种算法不足之处在于查找超父节点(Super—Parent)和创建分类器工作的反复进行,时间花费较大。为了提高这种算法的分类效率,同时保证分类率,设计了基于信息增益和基于互信息的两种排序算法。通过在Weka平台上对UCI中32个数据集合的实验表明,基于信息排序的优化算法可以在保持分类正确率同时降低分类花费。

英文摘要:

In order to improve the accuracy of Bayesian classifier, classified-based SuperParent-TAN is provided by Keogh to find the set of augmenting arcs, this is a one dependence estimator. But the cost is expensive for the repeatedly finding the SuperParent nodes and creating classifiers. In order to further improve the learning efficacy and efficiency, and manage the accuracy at the same time, two Sorted SuperParent Algorithms are provided in the text. One is ordered by information gains and another is by conditional mutual information. Experimental results on 32 datasets of UCI, indicate the effectiveness of the optimization.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与设计》
  • 北大核心期刊(2011版)
  • 主管单位:中国航天科工集团
  • 主办单位:中国航天科工集团二院706所
  • 主编:汤铭瑞
  • 地址:北京142信箱37分箱
  • 邮编:100854
  • 邮箱:ced@china-ced.com
  • 电话:010-68389884
  • 国际标准刊号:ISSN:1000-7024
  • 国内统一刊号:ISSN:11-1775/TP
  • 邮发代号:82-425
  • 获奖情况:
  • 中国科学引文数据库来源期刊,中国学术期刊综合评价数据库来源期刊,中国科技论文统计与分析用期刊
  • 国内外数据库收录:
  • 波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:45616