The output feedback model predictive control(MPC),for a linear parameter varying(LPV) process system including unmeasurable model parameters and disturbance(all lying in known polytopes),is considered.Some previously developed tools,including the norm-bounding technique for relaxing the disturbance-related constraint handling,the dynamic output feedback law,the notion of quadratic boundedness for specifying the closed-loop stability,and the ellipsoidal state estimation error bound for guaranteeing the recursive feasibility,are merged in the control design.Some previous approaches are shown to be the special cases.An example of continuous stirred tank reactor(CSTR) is given to show the effectiveness of the proposed approaches.
The output feedback model predictive control (MPC), for a linear parameter varying (LPV) process system including unmeasurable model parameters and disturbance (all lying in known polytopes), is considered. Some previously developed tools, including the norm-bounding technique for relaxing the disturbance-related constraint handling, the dynamic output feedback law, the notion of quadratic boundedness for specifying the closed-loop stability, and the ellipsoidal state estimation error bound for guaranteeing the recursive feasibility, are merged in the control design. Some previous approaches are shown to be the special cases. An example of continuous stirred tank reactor (CSTR) is given to show the effectiveness of the proposed approaches.