位置:成果数据库 > 期刊 > 期刊详情页
基于植被信息遥感反演的东亚飞蝗监测研究
  • ISSN号:1672-0504
  • 期刊名称:《地理与地理信息科学》
  • 时间:0
  • 分类:TP79[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]南京师范大学地理科学学院,江苏南京210097
  • 相关基金:国家自然科学基金项目(40371081);江苏省研究生创新计划项目(1612005012)
中文摘要:

植被是东亚飞蝗发生和成灾的重要指示因子。运用遥感技术对植被生长进行监测,对东亚飞蝗的预测和防治具有重要意义。以河北省黄骅市为研究区,利用实地获取的植被冠层孔隙度数据反算的LAI数据以及Landsat-5TM影像提取的各种VI数据,进行了IAI(LAI-2000改进型算法的反算结果)与TM影像上反演的VI之间的相关分析。结果表明,RDVI最适合反映研究区植被生长状况。分析RDVI与飞蝗发生面积的关系,发现两者呈负线性相关,即随着RDVI减小,飞蝗的发生面积呈线性增大。

英文摘要:

Vegetation is one of the most important indicators for the occurrence and outbreak of oriental migratory locust. For the prediction and control of the locust it has significant meanings to monitor vegetation growing by remote sensing. In this study, Huanghua City in Hebei Province was taken as the study area. Firstly, from the view of the mechanism of developing the optical models and quantitative analysis,four algorithms used for LAI retrieval based on the gap fraction of vegetation canopy (GLAI) were analyzed and compared.These methods are the Bonhomme & Chattier algorithm, the LAI - 2000 algorithm, the improved LAI - 2000 algorithm and the Campbell's ellipsoid distribution algorithm, respectively. The result shows that among them the LAI - 2000 algorithm is the best one in terms of the accuracy of LAI retrieval. Secondly,the correlation analyses were conducted between GLAI obtained by improved LAI - 2000 model in field and the VI values retrieved from Landsat - 5 TM image data. It is found that RDVI is the most optimum considering indicating vegetation growing condition among the different forms of VI. Thirdly, a negative correlation exists in the relation between RDVI and the area in which the locust outbreak appeared. In other words,with the decrease of RDVI,the locust outbreak area appears linearly increased.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《地理与地理信息科学》
  • 北大核心期刊(2011版)
  • 主管单位:河北省科学院地理科学研究所
  • 主办单位:河北省科学院地理研究所 北京大学遥感与地理信息系统研究所
  • 主编:
  • 地址:石家庄市长安区西大街94号
  • 邮编:050011
  • 邮箱:dlxxkx@vip.163.com
  • 电话:0311-86054904
  • 国际标准刊号:ISSN:1672-0504
  • 国内统一刊号:ISSN:13-1330/P
  • 邮发代号:18-27
  • 获奖情况:
  • 全国《中文核心期刊要目总览》核心期刊,河北省第六届优秀科技期刊,中国科技论文统计源期刊
  • 国内外数据库收录:
  • 中国中国人文社科核心期刊,中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:16233