位置:成果数据库 > 期刊 > 期刊详情页
基于粗糙集支持向量机的遥感影像分类算法研究
  • ISSN号:1674-6236
  • 期刊名称:《电子设计工程》
  • 时间:0
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]海军航空工程学院电子信息工程系,山东烟台264001, [2]解放军92785部队河北秦皇岛066200
  • 相关基金:基金项目:国家自然科学基金资助(61102165)
中文摘要:

近年来,随着遥感技术的飞速发展,遥感影像的处理和分类已成为遥感应用研究中的一个热点,粗糙集(RS)理论和支持向量机(SVM)在信息处理和分类方面具有独特的优势,本文将粗糙集支持向量机应用于遥感影像分类,简要介绍了粗糙集理论的基本概念和支持向量机的基本原理,将粗糙集理论的属性约简作为前置系统,剔除冗余属性,把SVM分类器作为后置系统,对遥感影像进行训练和分类,实验结果表明该模型不仅提高了系统运行的速度,而且分类性能有了一定的提高,为遥感影像分类提供了一条有效途径。

英文摘要:

In recent years,with the rapid development of remote sensing technology,processing and classification of remote sensing image has become a hotspot in application studies of remote sensing.Rough set theory and SVM have unique advantages in information processing and classification.this paper applys RS-SVM to remote sensing image classification, briefly introduce the concepts of RS and principle of SVM,attributes reduction in RS theory as preposing system,get rid of redundancy attributes,SVM classifier as postposing system,train and classify remote sensing image.experimental results indicate this model not only raise the operating speed,but also improve classification performance,provide a new effective way in remote sensing image classification.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《电子设计工程》
  • 中国科技核心期刊
  • 主管单位:九三学社陕西省委员会
  • 主办单位:西安三才科技实业有限公司
  • 主编:严明
  • 地址:西安市高新区高新路25号瑞欣大厦10A室
  • 邮编:710082
  • 邮箱:editor@ieechina.com
  • 电话:029-84350396
  • 国际标准刊号:ISSN:1674-6236
  • 国内统一刊号:ISSN:61-1477/TN
  • 邮发代号:52-142
  • 获奖情况:
  • 中国学术期刊综合评价数据库来源期刊
  • 国内外数据库收录:
  • 中国中国科技核心期刊
  • 被引量:13470