位置:成果数据库 > 期刊 > 期刊详情页
Dirichlet过程混合模型在非线性过程监控中的应用
  • ISSN号:1008-973X
  • 期刊名称:《浙江大学学报:工学版》
  • 时间:0
  • 分类:TP311[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1] 浙江大学智能系统与控制研究所,浙江杭州,310027, [2] 北京科技大学机械工程学院,北京海淀,100083
  • 相关基金:国家自然科学基金资助项目(61320106009)
中文摘要:

针对高斯混合模型在模型选择阶段易产生有噪声或过拟合的模型估计问题,提出基于Dirichlet过程混合模型的非参数贝叶斯故障诊断方法.通过重新定义高斯混合模型中的混合权重,利用stick-breaking法建立Dirichlet过程混合模型.通过具有截断作用的变分法近似推理出模型参数以及隐含变量,利用所得后验对故障模型进行估计,并提出基于后验概率的监测统计量以度量出故障状态在后验中的波动.在连续搅拌釜式反应器和Tennessee Eastman化工过程上的实验结果表明,该方法在故障检测方面优于传统的核主元分析法,并且具有较高的故障诊断率.

英文摘要:

A nonparametric Bayesian fault detection method based on Dirichlet process mixture model was proposed to resolve the issues of Gaussian mixture model, i. e. , noisy model size estimates and overfitting proneness in the model estimation. The construction of Dirichlet process mixture model was constructed baseed on the stick-breaking method and the redefinition of the mixing weight in Gaussian mixture model. The parameters and latent variables was approximatively infered by an efficient truncated variational Bayesian inference algorithm. The resulting posterior distribution was utilized to the estimation of fault model. The monitoring statistic was proposed to measure the variation inside the posterior. The results on the non-isothermal continuous stirred-tank reactor and Tennessee Eastman chemical plant simulation show that the performances of fault diagnosis by the presented method are superior to that by kernel principal component analysis with higher accuracy.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《浙江大学学报:工学版》
  • 北大核心期刊(2011版)
  • 主管单位:教育部
  • 主办单位:浙江大学
  • 主编:岑可法
  • 地址:杭州市浙大路38号
  • 邮编:310027
  • 邮箱:xbgkb@zju.edu.cn
  • 电话:0571-87952273
  • 国际标准刊号:ISSN:1008-973X
  • 国内统一刊号:ISSN:33-1245/T
  • 邮发代号:32-40
  • 获奖情况:
  • 2000年获浙江省科技期刊质量评比二等奖,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:21198