个体单体型MSR(minimumSNPremoval)问题是指如何利用个体的基因测序片断数据去掉最少的SNP(single—nucleotidepolymorphisms)位点,以确定该个体单体型的计算问题对此问题,Bafna等人提出了时间复杂度为O(2^kn^2m)的算法,其中,m为DNA片断总数,n为SNP位点总数,k为片断中洞(片断中的空值位点)的个数由于一个Mate—Pair片段中洞的个数可以达到100,因此,在片段数据中有Mate—Pair的情况下,Bafna的算法通常是不可行的.根据片段数据的特点提出了一个时间复杂度为D(n-1)(足广1)k22^2k+(k1+1)^2k+nk2+mkl)的新算法,其中,k1为一个片断覆盖的最大SNP位点数(不大于n),k2也为覆盖同一SNP位点的片段的最大数(通常不大于19),h为覆盖同一SNP位点且在该位点取空值的片断的最大数(不大于也).该算法的时间复杂度与片断中洞的个数的最大值k没有直接的关系,在有Mate—Pair片断数据的情况下仍然能够有效地进行计算,具有良好的可扩展性和较高的实用价值.
The individual haplotyping MSR (minimum SNP removal) problem is the computational problem of inducing an individual's haplotypes from one's DNA fragments sequencing data by dropping minimum SNPs (single-nucleotide polymorphisms). To solve the problem, Bafna, et al. had provided an algorithm of time complexity o(2^kn^2m) with the number of fragments m, the SNP sites n, the maximum number of holes k in a fragment. In the case that there are some Mate-Pairs, since the number of holes in a Mate-Pair can reach 100, Bafna's algorithm is impracticable. Based on the characters of DNA fragments, this paper presents a new algorithm of time complexity O((n-1)(k1-1)k22^2h+(k1+1)2h+nk2+mkl) with the maximum number of SNP sites that a fragment covers kl (no more than n), the maximum number of the fragments covering a SNP site k2 (usually no more than 19) and the maximum number of fragments covering a SNP site whose value is unknown at the SNP site h (no more than k2). Since the time complexity is not directly related with k, the algorithm can deal with the MSR problem with Mate-Pairs efficiently, and is more scalable and applicable in practice.