以金红石、钛精矿、Al(或铝镁合金)为原料采用热还原法制备出高钛铁合金.计算了不同反应体系的绝热温度以及与TiO2–Al,TiO2–Mg体系相关反应的吉布斯自由能变,采用DTA研究了不同体系的反应动力学,采用XRD等对高钛铁合金进行了表征.结果表明,所有反应体系的绝热温度均大于1800K,反应能自发进行;采用Al–Mg合金复合还原剂能保证TiO2的有效还原,降低合金中的氧含量以及夹杂物含量;Al还原TiO2反应的表观活化能为164.497kJ/mol,反应级数为0.414,Mg还原TiO2的表观活化能为383.235kJ/mol,反应级数为0.591;高钛铁由Al2O3、TiO2、Ti2O、Fe2TiO4、Ti9Fe3(Ti0.7Fe0.3)O3等复杂相组成,合金中氧含量高达12.20%.
Rutile,ilmenite and Al powder (or Al–Mg alloy) were used to prepare high titanium ferroalloy. The adiabatic temperatures of different reaction systems and the Gibbs free energy changes of relative reactions on TiO2–Al system and TiO2–Mg systems were calculated. The reaction kinetics of the systems was studied by DTA. The high titanium ferroalloy was characterized by XRD,SEM and electron microprobe. The results indicate that the adiabatic temperatures of all reaction systems are higher than 1800 K so all the reactions can be kept spontaneously. The content of oxygen and inclusions in the alloy can be controlled to lower level when Al–Mg alloy is used to reduce TiO2. The apparent activation energy is 164.497 kJ/mol and reaction order 0.414 when Al reduces TiO2. The apparent activation energy is 383.235 kJ/mol and reaction order 0.591 when Mg reduces TiO2. The high titanium ferroalloy consists of Al2O3,TiO2,Ti2O,Fe2TiO4,and Ti9Fe3 (Ti0.7Fe0.3)O3 complex phases. The oxygen content in the ferroalloy is up to 12.20%.