提出一个求解二维无粘Lagrange流体力学方程的中心型有限体积方法.采用特征理论求解网格节点处的速度及压力,并利用这些物理量更新节点位置及计算网格界面通量.方法适用于结构网格与非结构网格.典型数值实验的结果表明,格式具有较好的收敛性、对称性、能量守恒性及鲁棒性,且能自然地求解多物质流动问题.
We present a cell-centered finite volume method for 2D invicsous Lagrangian hydrodynamics.Velocity and pressure on vertex of a cell are computed with characteristics theory,which is derived from governing equations of Lagrangian form linearized by freezing Jacobian matrices about a known reference state.The velocity is used to update coordinate of vertex of a cell.Product of two variables is used to compute numerical flux through cell interface by a trapezoidal integration rule.Convergency,symmetry and conservation of total energy of the method are demonstrated.The method can be applied to structured or unstructured grids,and does well spontaneously for multi-material flows in a robust way.The scheme is one order precision,and can be easily draw on two order precision.