可信终端的远程证明无论是基于二进制的证明方案还是基于属性的证明方案,针对的均是终端的静态环境,反映的是终端的软件配置结构,并不能证明终端运行环境的真正可信。针对这一问题,提出了一种终端可信环境远程证明方案。针对静态环境,该方案考虑了满足可信平台规范的信任链以及相关软件配置的可信属性证明;针对动态环境,该方案考虑了终端行为的可信属性证明。并分别给出了信任链、平台软件配置和终端行为等属性证明的可信性判定策略和算法,以及终端运行环境远程证明的综合性判定策略和算法。另外,在 Windows 平台上,设计和实现了该方案中的两个核心实体:证明代理和验证代理,并设计了证明代理和验证代理之间的通信协议。最后,介绍了该方案在 Windows 平台上的一个典型应用案例以及证明代理在该应用实例中的性能开销。应用实例验证了该方案的可行性。
Remote attestation, whether binary-based or property-based, mostly undertakes the static environment of the trusted terminal where only part of software configurations in the trusted terminal are demonstrated, leaving trustworthiness of the dynamic running environment unproved. To resolve the problem, a new property-based remote attestation project for the dynamic running environment of the trusted terminal is presented. The project focuses not only on trusted chain and software configuration for the static environment of the trusted terminal, but also on the behaviors of the trusted terminal for the dynamic environment. Moreover, the decidability and algorithm for the trustworthiness of each property by each specific trusted policy is analyzed, and the comprehensive decision strategy is put forward. After that, attestation agent and verification agent which are critical entities in the project, are designed and implemented on Windows, and the communication protocol between them are designed too. Finally, an application case of the project on Windows is introduced, the performance of attestation agent in this application is studied, and the feasibility of the project is demonstrated.