部分微分方程越来越在为记忆建模被使用(历史依赖者,非局部,或世袭) 现象。部分微分方程的常规起始的价值在一个点被定义,当时最近的工作在历史上定义起始的条件。我们证明有 Riemann-Liouville 衍生物的部分微分方程的常规初始化一个简单反例错误。起始的价值被假定任意地为一个典型部分微分方程被付出,但是我们发现这些价值之一能仅仅是零。我们证明部分微分方程具有无限的尺寸,和起始的条件,起始的历史,在间隔上被定义为功能。我们为 Caputo 大小写获得相等的不可分的方程。与材料的一个简单部分模型一起,我们说明恢复行为是正确的与起始爬历史,但是在恢复的起点的起始的价值错误。我们由数字地解决一个强迫的部分 Lorenz 系统演示起始的历史的应用程序。
Fractional differential equations are more and more used in modeling memory(history-dependent,nonlocal,or hereditary) phenomena.Conventional initial values of fractional differential equations are define at a point,while recent works defin initial conditions over histories.We prove that the conventional initialization of fractional differential equations with a Riemann–Liouville derivative is wrong with a simple counter-example.The initial values were assumed to be arbitrarily given for a typical fractional differential equation,but we fin one of these values can only be zero.We show that fractional differential equations are of infinit dimensions,and the initial conditions,initial histories,are define as functions over intervals.We obtain the equivalent integral equation for Caputo case.With a simple fractional model of materials,we illustrate that the recovery behavior is correct with the initial creep history,but is wrong with initial values at the starting point of the recovery.We demonstrate the application of initial history by solving a forced fractional Lorenz system numerically.