位置:成果数据库 > 期刊 > 期刊详情页
在不准确方差下带随机系数矩阵的卡尔曼滤波稳定性
  • ISSN号:1874-1029
  • 期刊名称:自动化学报
  • 时间:2013
  • 页码:43-52
  • 分类:TP[自动化与计算机技术]
  • 作者机构:[1]中国科学院数学与系统科学研究院系统与控制重点实验室,北京100190
  • 相关基金:国家自然科学基金(61174143)资助
  • 相关项目:模块化非线性系统辨识
中文摘要:

针对离散时间线性随机系统,研究了卡尔曼滤波的L2-稳定性问题.考虑具有这两个特点的系统:1)系数矩阵是随机的;2)过程噪声、量测噪声、初始估计误差的方差矩阵不准确.在系数矩阵有界、条件能观测、初始估计谟差有界的假设下,得到了卡尔曼滤波的L2-稳定性.同时,建立了卡尔曼滤波和状态空间最小二乘的等价性,并在该等价性基础上得到状态空间最小二乘的状态估计误差L2-稳定性.最后,数值仿真说明了卡尔曼滤波的有效性.

英文摘要:

This paper studies the L2-stability of Kalman filter for discrete-time linear stochastic systems. Two main features, i.e., random coefficient matrices and incorrect covariances of process noise, measurement noise and initial value, are emphasized. Under suitable conditions, including boundedness of coefficient matrices, conditional observability and boundedness of initial error and noises, L2-stability of Kalman filter is achieved. The equivalence between Kalman filter and state-space least squares algorithm is established. Based on this equivalence, L2-stability of state estimation error by state-space least squares is also obtained. A numerical example is given to demonstrate the effectiveness of Kalman filtering algorithm.

同期刊论文项目
期刊论文 10 会议论文 13
同项目期刊论文