位置:成果数据库 > 期刊 > 期刊详情页
基于最小二乘法的冗余信息数据融合算法实现
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]哈尔滨工程大学自动化学院,哈尔滨150001
  • 相关基金:国家自然科学基金( the National Natural Science Foundation of China under Grant No.60672035/F010119 );博士点基金资助项目(No.20050217021).
中文摘要:

为了有效融合多传感器冗余系统量测信息,使状态的估计值更接近于状态的真实值,实现高精度和高可靠性的状态估计,采取了基于最优加权的最小二乘算法、有限窗加权的最小二乘算法和自学习加权最小二乘算法,分别对多传感器实测数据进行融合处理,融合后数据的方差大幅度降低,估计精度显著提高。并与传统的最小二乘算法进行了仿真对比,结果表明,这3种方法较最小二乘算法融合精度更高,其中,自学习加权的最小二乘融合算法既考虑了历史数据的作用,又考虑了环境噪声和新的采样值的影响,增强了对噪声检测的敏感性,估计效果较好。

英文摘要:

For the sake of effect fusion of multi-sensor redundant system metrical information,making the value of state estimation approach to the true value and retaliating high accuracy and high reliability state estimation,three algorithms,based on optimally weighted least square method(OW-LSM)and finite windowing weighted algorithm(FW-LSM)and the self-learning weighted least squares(SL-LSM),are applied to information fusion of multi-sensor data respectively.The mean variance of data is reduced, estimation accuracy is advanced dramatically.Then the simulation comparison with traditional least squares is performed.Results show that the three algorithms has higher accuracy than the traditional one.Therein, Self-learning weighted least squares taken the effect of history data and ambient noise and new sample value into account,enhanced sensitivity to noise measure,has better estimation effect.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887