位置:成果数据库 > 期刊 > 期刊详情页
混合高斯参数估计的两种EM算法比较
  • ISSN号:1000-3630
  • 期刊名称:声学技术
  • 时间:2014.12.15
  • 页码:539-543
  • 分类:TN911.7[电子电信—通信与信息系统;电子电信—信息与通信工程]
  • 作者机构:[1]海军工程大学,湖北武汉430033, [2]广州大学,广东广州510006
  • 相关基金:国家自然科学基金资助项目(51109218)
  • 相关项目:海洋混响的时空非均匀性及抑制方法研究
中文摘要:

混合高斯模型是一种典型的非高斯概率密度模型,获得广泛应用。其参数的优效估计可以通过最大似然方法获得,但最大似然估计往往因其非线性而难以实现,故期望最大化(Expectation-Maximization,EM)迭代算法成为一种常用的替代方法。常规EM算法性能受迭代初值设置影响大,且不能对模型阶数做出估计。一种名为贪婪EM的改进算法可以克服这两个缺点,获得更为准确的模型参数估计,但其运算量一般会远大于前者。本文对这两种EM算法进行综合研究,深入挖掘两者之间的关系,并基于相同的数值仿真实例,直观地演示比较两者的性能差异。

英文摘要:

Gaussian mixture is a typical and widely-used non-Gaussian probability density distribution model. The expectation-maximization algorithm is a usual iterative realization for the maximum likelihood estimation of its para-meters. However, its performance depends highly on the initial values. And it can not estimate the order of Gaussian mixture. The greedy expectation-maximization algorithm can solve these problems by incrementally adding Gaussian components to the mixture. But its operation quantity is often much larger than the former. The relationship between these two algorithms is discussed, and their concrete realization methods are given comparatively. With the same nu-merical instance, their performance differences are illustrated and studied.

同期刊论文项目
期刊论文 9 会议论文 11 获奖 2
同项目期刊论文
期刊信息
  • 《声学技术》
  • 北大核心期刊(2014版)
  • 主管单位:中国科学院
  • 主办单位:中科院声学所东海研究站 同济大学声学研究所 上海市声学学会 上海船舶电子设备研究所
  • 主编:张叔英
  • 地址:上海市嘉定工业区新徕路399号
  • 邮编:201815
  • 邮箱:sxjs@vip.163.com
  • 电话:021-67084688-2101 64174105
  • 国际标准刊号:ISSN:1000-3630
  • 国内统一刊号:ISSN:31-1449/TB
  • 邮发代号:
  • 获奖情况:
  • 2001年在《中国学术期刊(光盘版)检索与评价数据...
  • 国内外数据库收录:
  • 波兰哥白尼索引,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2014版)
  • 被引量:5693