信息、生物、先进制造、航天航空等高科技领域的飞速发展对微/纳加工技术及工艺提出了全新的、苛刻的要求,亟待发展创新的微纳加工方法。基于摩擦诱导微纳米加工方法,利用自制的多点接触微纳米加工设备,在单晶硅表面制备了各种大面积织构,并研究了织构形状和间距对表面接触角的影响规律。结果表明,单晶硅表面织构的线间距越小,表面接触角越大;"#"型织构相对于线性织构表现出更好的疏水性能,最大可使单晶硅表面的接触角增大145%。此外,利用摩擦诱导加工方法获得的表面织构具有良好的稳定性。放置一个月后,单晶硅表面织构的接触角测量结果与新鲜制备样品的测量结果相比没有明显变化。因此,摩擦诱导选择性刻蚀提供了一种实现单晶硅表面大面积功能织构加工的新方法。
The rapid development of high-teclmology area, such as information, biology and advanced manufacturing, puts forward new and stringent requirements for micro/nano fabrication method. It is essential to develop new methods for the micro/nano fabrication on silicon surface at large scale. By using self-built micro/nano fabrication equipment, large-area textures with various shapes are fabricated on monocrystaUine silicon surface based on friction-induced selective etching method. The effect of pattern shape and line space of textures on the contact angle of silicon surface is studied. The results show that the smaller the line space, the larger the contact angle of texture. #-shaped texture reveals better hydrophobic property than the linear texture, which can increase the contact angle of silicon surface as large as 145%. In addition, the textured surface shows a good stability. Even after fabrication for one month, almost no change is detected for the contact angle on textured silicon surface. Therefore, the fi-iction-induced selective etching provides a new approach to realize the functional texture on monocrystalline silicon surface at large scale.