位置:成果数据库 > 期刊 > 期刊详情页
基于数据挖掘的SVM短期负荷预测方法研究
  • ISSN号:0258-8013
  • 期刊名称:《中国电机工程学报》
  • 时间:0
  • 分类:TM74[电气工程—电力系统及自动化]
  • 作者机构:[1]华北电力大学工商管理学院,河北省保定市071003
  • 相关基金:国家自然科学基金项目(50077007);河北省自然科学基金项目(G2005000584).
中文摘要:

支持向量机方法已成功地应用在负荷预测领域,但它在训练数据时存在数据处理量太大、处理速度慢等缺点.为此提出了一种基于数据挖掘预处理的支持向量机预测系统,引用在处理大数据量、消除冗余信息等方面具有独特优势的数据挖掘技术,寻找与预测日同等气象类型的多个历史短期负荷,由此组成具有高度相似气象特征的数据序列,将此数据序列作为支持向量机的训练数据,可减少数据量,从而提高预测的速度和精度,克服支持向量机的上述缺点.将该系统应用于短期负荷预测中,与单纯的SVM方法和BP神经网络法相比,得到了较高的预测精度.

英文摘要:

The support vector machine (SVM) has been successfully applied to the load forecasting area, but it has some disadvantages of very large data amount and slow processing speed, Using advantages of the data mining technology in processing large data and eliminating redundant information, a SVM forecasting system based on data mining preprocess was proposed to search the historical daily load with the same meteorological category as the forecasting day and to compose data sequence with highly similar meteorological features. Taking the new data sequence as the training data of SVM, the data amount was decreased and the processing speed was improved. This approach has achieved greater forecasting accuracy comparing with the method of single SVM and BP neural network.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中国电机工程学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国电机工程学会
  • 主编:张文涛
  • 地址:北京清河小营东路15号 中国电力科学研究院内
  • 邮编:100192
  • 邮箱:pcsee@epri.sgcc.com.cn
  • 电话:010-82812536 82812534 82812545
  • 国际标准刊号:ISSN:0258-8013
  • 国内统一刊号:ISSN:11-2107/TM
  • 邮发代号:82-327
  • 获奖情况:
  • 1992年全国优秀科技期刊三等奖,1992年中国科协优秀科技期刊二等奖,1996年中国科协优秀科技期刊二等奖,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:98970