位置:成果数据库 > 期刊 > 期刊详情页
基于Hessian矩阵和Gabor函数的局部兴趣点检测
  • ISSN号:1000-386X
  • 期刊名称:《计算机应用与软件》
  • 时间:0
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]复旦大学计算机科学技术学院,上海201203
  • 相关基金:国家自然科学基金项目(60875003); 国家高技术研究发展计划项目(2011AA100701)
中文摘要:

人脸识别一般都要先对人脸特征做维数约简,再做识别。有些传统的维数约简算法对训练样本的数量有一定的要求,比如对分类比较有效的LDA算法。而现实应用中,数据库往往只能为每个人脸对象提供数量非常有限的图片,甚至是单样本。提出一种基于均匀LBP(Local Binary Pattern)算子和稀疏编码的人脸识别方法,使用少量关键特征代替维数约简过程,解决训练样本稀少的问题。在Stirling人脸库上进行测试,获得较高的识别率和鲁棒性,证实了算法的有效性。

英文摘要:

Face recognition generally requires facial feature dimensionality reduction before recognition. However, for some traditional dimensionality reduction algorithms, they have certain requirements on the number of training samples, such as LDA (linear discriminant analysis), though it is quite effective in categorisation, whereas in real-world applications, often the databases can only provide very limited number of pictures for each human face, or even a single training sample. This paper presents a face recognition method, it is based on the uniform LBP operator and sparse coding, and uses few key features to replace the dimensionality reduction process, thus overcomes the problem of limited number of training samples. The method is tested on Stirling face database and achieves higher recognition rate and robustness, this confirms the effectiveness of the algorithm.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用与软件》
  • 北大核心期刊(2011版)
  • 主管单位:上海科学院
  • 主办单位:上海市计算技术研究所 上海计算机软件技术开发中心
  • 主编:朱三元
  • 地址:上海市愚园路546号
  • 邮编:200040
  • 邮箱:cas@sict.stc.sh.cn
  • 电话:021-62254715 62520070-505
  • 国际标准刊号:ISSN:1000-386X
  • 国内统一刊号:ISSN:31-1260/TP
  • 邮发代号:4-379
  • 获奖情况:
  • 全国计算机类中文核心期刊
  • 国内外数据库收录:
  • 波兰哥白尼索引,美国剑桥科学文摘,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2011版),中国北大核心期刊(2000版)
  • 被引量:27463