给定一个平面图G,χ′l(G)和χ″l(G)分别表示图G的列表边色数和列表全色数。证明了:如果一个平面图G满足Δ(G)≥7,并且任何一个三角形至多和一个其他的三角形相邻,则有χ′l(G)≤Δ(G)+1和χ″l(G)≤Δ(G)+2成立。
Given a planar graph G,let χ l(G) and χ″l(G) denote the list edge chromatic number and list total chromatic number of G respectively.It is proved that if a planar graph G with Δ(G)≥7 such that a triangle is adjacent to at most one triangle,then χ l(G)≤Δ(G)+1 and χ″l(G)≤Δ(G)+2.