位置:成果数据库 > 期刊 > 期刊详情页
基于多尺度特征融合的SAR图像分割
  • 期刊名称:计算机工程与应用
  • 时间:0
  • 页码:196-199+213
  • 语言:中文
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]西北工业大学计算机学院,西安710072
  • 相关基金:基金项目:国家自然科学基金(the National Natural Science Foundation of China under GrantNo.60873086);西北工业大学基础研究基金(No.JC200942);航天支撑技术资金资助.
  • 相关项目:基于形态成分分析的图像稀疏分解与应用
中文摘要:

由于存在相干斑噪声的影响,给SAR图像分割造成很大的困难,提出一种基于多尺度特征融合的SAR图像分割方法。该方法利用快速离散curvelet变换提取图像的纹理特征,利用平稳小波变换提取图像的统计特征,将两种多尺度特征融合成高维的特征向量,采用模糊C均值聚类的方法进行分割。在仿真SAR图像和真实SAR图像的分割实验结果表明,提出的方法优于单独采用小波变换进行SAR图像分割的方法,在消除均质区内碎块的同时,使得边界更为精准和平滑

英文摘要:

SAR image segmentation is complicated due to the multiplicative nature of the speckle noise in SAR images.AnSAR image segmentation method based on the multi-scale feature fusion is proposed in this paper.The fast discrete curvelettransform is applied to extract the image texture features,and the stationary wavelet transform is applied to extract the im-age statistical features.These two multi-scale features are fused to obtain a high dimensional feature vector.The fuzzyC-means clustering is used to segment the image.Experiments are carried out using typical noise-free image corrupted withsimulated speckle noise as well as real SAR images,and the results show that the proposed method performs favorably incomparison to the methods based on the wavelet transform only.The proposed segmentation method can delete lots of smallfragments in the homogeneous regions and obtain more accurate and smooth boundaries

同期刊论文项目
期刊论文 16 会议论文 7 专利 11
同项目期刊论文