利用轻气炮加载技术和光透射测量技术,观测了冲击加载过程中水,石英界面处的水结构变化.实验发现,冲击条件(0.5—2GPa,335—375K)下水在液相区内能够发生结构改变且起始于水,石英界面,结构改变的速率和程度与石英界面的特性有关.证实在固/液相边界一定区域内的液态水,在经历高温高压状态的变化中表现出特殊的相转变现象.同时,研究表明液态水结构转变的过程区分为明显的四个动力学阶段.
We investigate the structural transformations of water at the water/quartz interface under shock compression in ranges from 0.5 to 2 GPa and from 335 to 375 K by techniques of a gas-gun and light transmission tests. The results show that the structural transformation of water occurs in the region of liquid phase, which starts from water/quartz interface at high pressures and temperatures. The transformation rate is related to the property of quartz interface. This structural evolution indicates that a lager number of water molecules undergone transitions in equilibrium behavior. The kinetic process of liquid water structure can be divided into four stages while the structure continues growing to saturation. This new mechanism of structural transformation has immediate implications for water structure transformation in diverse natural environments.