本文我们研究下述带位势项的一般拟线性椭圆方程{-div(g^p(u)|▽u^|p-2▽u) + g^p-1(u)g′(u)|▽u|^p+ V(x)u^p-1= h(u), x ∈ R^N,u ∈ W^1,p(R^N),非平凡解的存在性.其中V(x):RN^→R为正函数且非线性项h:R→R具有次临界增长.我们通过引入一个新的变量替换,用山路引理证明此方程非平凡解的存在性.
This paper shows the existence of nontrivial positive solutions of the following generalized quasilinear elliptic equation {-div(g^p(u)|▽u^|p-2▽u) + g^p-1(u)g′(u)|▽u|^p+ V(x)u^p-1= h(u), x ∈ R^N,u ∈ W^1,p(R^N)where the potential V(x):RN^→R is uniformly positive and h(u) is a nonlinear term of subcritical type. By introducing a variable replacement, we prove the existence of a nontrivial positive solution via the Mountain pass theorem.